TGF beta R2 Polyclonal Antibody, ALEXA FLUOR® 594 Conjugated

Applications

  • WB
  • FCM
  • IF(IHC-P)
  • IF(IHC-F)
  • IF(ICC)

Reactivity

  • Human
  • Mouse
  • Rat
  • Rabbit
  • Cow

Predicted Reactivity

  • Sheep
  • Pig
  • Horse
  • Chicken
Overview
Catalog # bs-0117R-A594
Product Name TGF beta R2 Polyclonal Antibody, ALEXA FLUOR® 594 Conjugated
Applications WB, FCM, IF(IHC-P), IF(IHC-F), IF(ICC)
Reactivity Human, Mouse, Rat, Rabbit, Cow
Predicted Reactivity Sheep, Pig, Horse, Chicken
Specifications
Conjugation ALEXA FLUOR® 594
Host Rabbit
Source KLH conjugated synthetic peptide derived from human TGF beta R2
Immunogen Range 241-330/567
Clonality Polyclonal
Isotype IgG
Concentration 1ug/ul
Purification Purified by Protein A.
Storage Buffer Aqueous buffered solution containing 0.01M TBS (pH 7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol.
Storage Condition Store at -20°C. Aliquot into multiple vials to avoid repeated freeze-thaw cycles.
Target
Gene ID 7048
Swiss Prot P37173
Subcellular location Cell membrane
Synonyms AAT3; FAA3; LDS2; MFS2; RIIC; LDS1B; LDS2B; TAAD2; TGFR-2; TGFbeta-RII; TGF-beta receptor type-2; TGF-beta type II receptor; Transforming growth factor-beta receptor type II; TGF-beta receptor type II; TbetaR-II; TGFBR2
Background Transmembrane serine/threonine kinase forming with the TGF-beta type I serine/threonine kinase receptor, TGFBR1, the non-promiscuous receptor for the TGF-beta cytokines TGFB1, TGFB2 and TGFB3. Transduces the TGFB1, TGFB2 and TGFB3 signal from the cell surface to the cytoplasm and is thus regulating a plethora of physiological and pathological processes including cell cycle arrest in epithelial and hematopoietic cells, control of mesenchymal cell proliferation and differentiation, wound healing, extracellular matrix production, immunosuppression and carcinogenesis. The formation of the receptor complex composed of 2 TGFBR1 and 2 TGFBR2 molecules symmetrically bound to the cytokine dimer results in the phosphorylation and the activation of TGFRB1 by the constitutively active TGFBR2. Activated TGFBR1 phosphorylates SMAD2 which dissociates from the receptor and interacts with SMAD4. The SMAD2-SMAD4 complex is subsequently translocated to the nucleus where it modulates the transcription of the TGF-beta-regulated genes. This constitutes the canonical SMAD-dependent TGF-beta signaling cascade. Also involved in non-canonical, SMAD-independent TGF-beta signaling pathways.
Application Dilution
WB 1:300-5000
FCM 1:20-100
IF(IHC-P) 1:50-200
IF(IHC-F) 1:50-200
IF(ICC) 1:50-200