Free Shipping On Orders Over $1,000!

Human Cytochrome P450 1A2 (CYP1A2) ELISA Kit

Principle of the Assay

The microtiter plate provided in this kit has been pre-coated with an antibody specific to CYP1A2. Standards or samples are then added to the appropriate microtiter plate wells with a biotin-conjugated antibody preparation specific to CYP1A2. Next, Avidin conjugated to Horseradish Peroxidase (HRP) is added to each microplate well and incubated. After the TMB substrate solution is added, only those wells that contain CYP1A2, biotin-conjugated antibody, and enzyme-conjugated Avidin will exhibit a change in color. The enzyme-substrate reaction is terminated by the addition of sulphuric acid solution, and the color change is measured spectrophotometrically at a wavelength of 450nm ± 10nm. The concentration of CYP1A2 in the samples is then determined by comparing the O.D. of the samples to the standard curve.


For Use with serum, plasma, and cell culture supernatants. For Research Use Only. Not for use in diagnostic procedures.

Target Information

A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:9435160, PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:19965576). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:9435160, PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:19965576). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:11555828, PubMed:12865317). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2 (PubMed:11555828, PubMed:12865317). Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). May act as a major enzyme for all-trans retinoic acid biosynthesis in the liver. Catalyzes two successive oxidative transformation of all-trans retinol to all-trans retinal and then to the active form all-trans retinoic acid (PubMed:10681376). Primarily catalyzes stereoselective epoxidation of the last double bond of polyunsaturated fatty acids (PUFA), displaying a strong preference for the (R,S) stereoisomer (PubMed:19965576). Catalyzes bisallylic hydroxylation and omega-1 hydroxylation of PUFA (PubMed:9435160). May also participate in eicosanoids metabolism by converting hydroperoxide species into oxo metabolites (lipoxygenase-like reaction, NADPH-independent) (PubMed:21068195). Plays a role in the oxidative metabolism of xenobiotics. Catalyzes the N-hydroxylation of heterocyclic amines and the O-deethylation of phenacetin (PubMed:14725854). Metabolizes caffeine via N3-demethylation (Probable).

GENE ID 1544
SWISS PROT P05177
SYNONYMS CP12; P3-450; P450(PA); Cytochrome P450,Family 1,Subfamily A,Polypeptide 2


Materials Supplied

Kit Components 96 Wells Quantity/Size
Pre-coated, ready-to-use 96-well strip plate 1 plate
Plate sealer for 96 wells 2
Standard
2 tubes
Diluent buffer 1 bottle
Detection Reagent A 1 bottle
Detection Reagent B 1 bottle
TMB Substrate 1 tube
Stop Solution 1 tube
Wash Buffer (30 ℅ concentrate) 1 tube
Product data sheet 1 copy

Storage

Storage The TMB Substrate, Wash Buffer (30X concentrate), and the Stop Solution should be stored at 4°C upon receipt, while the other items should be stored at -20°C.

Performance Characteristics

REPEATABILITY

Intra-assay Precision (Precision within an assay): 3 samples with low, middle, and high-level CYP1A2 were tested 20 times on one plate, respectively.
Inter-assay Precision (Precision between assays): 3 samples with low, middle, and high-level CYP1A2 were tested on 3 different plates, with 8 replicates in each plate.
CV(%) = SD/meanX100

Intra-Assay: CV<10%
Inter-Assay: CV<12%

SENSITIVITY The minimum detectable dose was 0.051ng/mL.
ASSAY RANGE 0.156-10ng/mL
SPECIFICITY This assay has high sensitivity and excellent specificity for the detection of CYP1A2.
No significant cross-reactivity or interference between CYP1A2 and analogs was observed.
Note:
Limited by current skills and knowledge, it is impossible to perform all possible cross-reactivity detection tests between CYP1A2 and all analogs, therefore, cross reactivity may still exist.