Free Shipping On Orders Over $1,000!

Human Sirtuin 4 (SIRT4) ELISA Kit

Principle of the Assay

The microtiter plate provided in this kit has been pre-coated with an antibody specific to SIRT4. Standards or samples are then added to the appropriate microtiter plate wells with a biotin-conjugated antibody preparation specific to SIRT4. Next, Avidin conjugated to Horseradish Peroxidase (HRP) is added to each microplate well and incubated. After the TMB substrate solution is added, only those wells that contain SIRT4, biotin-conjugated antibody, and enzyme-conjugated Avidin will exhibit a change in color. The enzyme-substrate reaction is terminated by the addition of sulphuric acid solution, and the color change is measured spectrophotometrically at a wavelength of 450nm ± 10nm. The concentration of SIRT4 in the samples is then determined by comparing the O.D. of the samples to the standard curve.


For Use with serum, plasma, and cell culture supernatants. For Research Use Only. Not for use in diagnostic procedures.

Target Information

Acts as NAD-dependent protein lipoamidase, biotinylase, deacetylase and ADP-ribosyl transferase (PubMed:16959573, PubMed:17715127, PubMed:24052263, PubMed:25525879). Catalyzes more efficiently removal of lipoyl- and biotinyl- than acetyl-lysine modifications (PubMed:24052263, PubMed:25525879). Inhibits the pyruvate dehydrogenase complex (PDH) activity via the enzymatic hydrolysis of the lipoamide cofactor from the E2 component, DLAT, in a phosphorylation-independent manner (PubMed:25525879). Catalyzes the transfer of ADP-ribosyl groups onto target proteins, including mitochondrial GLUD1, inhibiting GLUD1 enzyme activity (PubMed:16959573, PubMed:17715127). Acts as a negative regulator of mitochondrial glutamine metabolism by mediating mono ADP-ribosylation of GLUD1: expressed in response to DNA damage and negatively regulates anaplerosis by inhibiting GLUD1, leading to block metabolism of glutamine into tricarboxylic acid cycle and promoting cell cycle arrest (PubMed:16959573, PubMed:17715127). In response to mTORC1 signal, SIRT4 expression is repressed, promoting anaplerosis and cell proliferation (PubMed:23663782). Acts as a tumor suppressor (PubMed:23562301, PubMed:23663782). Also acts as a NAD-dependent protein deacetylase: mediates deacetylation of 'Lys-471' of MLYCD, inhibiting its activity, thereby acting as a regulator of lipid homeostasis (By similarity). Does not seem to deacetylate PC (PubMed:23438705). Controls fatty acid oxidation by inhibiting PPARA transcriptional activation (PubMed:24043310). Impairs SIRT1-PPARA interaction probably through the regulation of NAD(+) levels (PubMed:24043310). Down-regulates insulin secretion (PubMed:17715127).

GENE ID 23409
SWISS PROT Q9Y6E7
SYNONYMS SIR2L4; Silent Mating Type Information Regulation 2 Homolog 4; SIR2-like protein 4; NAD-dependent protein deacetylase sirtuin-4


Materials Supplied

Kit Components 96 Wells Quantity/Size
Pre-coated, ready-to-use 96-well strip plate 1 plate
Plate sealer for 96 wells 2
Standard
2 tubes
Diluent buffer 1 bottle
Detection Reagent A 1 bottle
Detection Reagent B 1 bottle
TMB Substrate 1 tube
Stop Solution 1 tube
Wash Buffer (30 ℅ concentrate) 1 tube
Product data sheet 1 copy

Storage

Storage The TMB Substrate, Wash Buffer (30X concentrate), and the Stop Solution should be stored at 4°C upon receipt, while the other items should be stored at -20°C.

Performance Characteristics

REPEATABILITY

Intra-assay Precision (Precision within an assay): 3 samples with low, middle, and high-level SIRT4 were tested 20 times on one plate, respectively.
Inter-assay Precision (Precision between assays): 3 samples with low, middle, and high-level SIRT4 were tested on 3 different plates, with 8 replicates in each plate.
CV(%) = SD/meanX100

Intra-Assay: CV<10%
Inter-Assay: CV<12%

SENSITIVITY The minimum detectable dose was 0.051ng/mL.
ASSAY RANGE 0.156-10ng/mL
SPECIFICITY This assay has high sensitivity and excellent specificity for the detection of SIRT4.
No significant cross-reactivity or interference between SIRT4 and analogs was observed.
Note:
Limited by current skills and knowledge, it is impossible to perform all possible cross-reactivity detection tests between SIRT4 and all analogs, therefore, cross reactivity may still exist.