Free Shipping On Orders Over $1,000!

Human Antigen Peptide Transporter 1 (TAP1) ELISA Kit

Principle of the Assay

The microtiter plate provided in this kit has been pre-coated with an antibody specific to TAP1. Standards or samples are then added to the appropriate microtiter plate wells with a biotin-conjugated antibody preparation specific to TAP1. Next, Avidin conjugated to Horseradish Peroxidase (HRP) is added to each microplate well and incubated. After the TMB substrate solution is added, only those wells that contain TAP1, biotin-conjugated antibody, and enzyme-conjugated Avidin will exhibit a change in color. The enzyme-substrate reaction is terminated by the addition of sulphuric acid solution, and the color change is measured spectrophotometrically at a wavelength of 450nm ± 10nm. The concentration of TAP1 in the samples is then determined by comparing the O.D. of the samples to the standard curve.


For Use with serum, plasma, and cell culture supernatants. For Research Use Only. Not for use in diagnostic procedures.

Target Information

ABC transporter associated with antigen processing. In complex with TAP2 mediates unidirectional translocation of peptide antigens from cytosol to endoplasmic reticulum (ER) for loading onto MHC class I (MHCI) molecules (PubMed:25656091, PubMed:25377891). Uses the chemical energy of ATP to export peptides against the concentration gradient (PubMed:25377891). During the transport cycle alternates between 'inward-facing' state with peptide binding site facing the cytosol to 'outward-facing' state with peptide binding site facing the ER lumen. Peptide antigen binding to ATP-loaded TAP1-TAP2 induces a switch to hydrolysis-competent 'outward-facing' conformation ready for peptide loading onto nascent MHCI molecules. Subsequently ATP hydrolysis resets the transporter to the 'inward facing' state for a new cycle (PubMed:25377891, PubMed:25656091, PubMed:11274390). Typically transports intracellular peptide antigens of 8 to 13 amino acids that arise from cytosolic proteolysis via IFNG-induced immunoproteasome. Binds peptides with free N- and C-termini, the first three and the C-terminal residues being critical. Preferentially selects peptides having a highly hydrophobic residue at position 3 and hydrophobic or charged residues at the C-terminal anchor. Proline at position 2 has the most destabilizing effect (PubMed:7500034, PubMed:9256420, PubMed:11274390). As a component of the peptide loading complex (PLC), acts as a molecular scaffold essential for peptide-MHCI assembly and antigen presentation (PubMed:26611325, PubMed:1538751, PubMed:25377891).

GENE ID 6890
SWISS PROT Q03518
SYNONYMS APT1; ABC17; ABCB2; PSF1; RING4; Y3; TAP1N; Peptide Supply Factor 1; Atp-Binding Cassette,Subfamily B,Member 2; Peptide transporter involved in antigen processing 1


Materials Supplied

Kit Components 96 Wells Quantity/Size
Pre-coated, ready-to-use 96-well strip plate 1 plate
Plate sealer for 96 wells 2
Standard
2 tubes
Diluent buffer 1 bottle
Detection Reagent A 1 bottle
Detection Reagent B 1 bottle
TMB Substrate 1 tube
Stop Solution 1 tube
Wash Buffer (30 ℅ concentrate) 1 tube
Product data sheet 1 copy

Storage

Storage The TMB Substrate, Wash Buffer (30X concentrate), and the Stop Solution should be stored at 4°C upon receipt, while the other items should be stored at -20°C.

Performance Characteristics

REPEATABILITY

Intra-assay Precision (Precision within an assay): 3 samples with low, middle, and high-level TAP1 were tested 20 times on one plate, respectively.
Inter-assay Precision (Precision between assays): 3 samples with low, middle, and high-level TAP1 were tested on 3 different plates, with 8 replicates in each plate.
CV(%) = SD/meanX100

Intra-Assay: CV<10%
Inter-Assay: CV<12%

SENSITIVITY The minimum detectable dose was 0.134ng/mL.
ASSAY RANGE 0.312-20ng/mL
SPECIFICITY This assay has high sensitivity and excellent specificity for the detection of TAP1.
No significant cross-reactivity or interference between TAP1 and analogs was observed.
Note:
Limited by current skills and knowledge, it is impossible to perform all possible cross-reactivity detection tests between TAP1 and all analogs, therefore, cross reactivity may still exist.